
 Imprint

Copyright 2012 Smashing Media GmbH, Freiburg, Germany

Version 1: June 2012

ISBN: 978-3-943075-33-5

Cover Design: Ricardo Gimenes

PR & Press: Stephan Poppe

eBook Strategy: Thomas Burkert

Technical Editing: Talita Telma Stöckle, Andrew Rogerson

Idea & Concept: Smashing Media GmbH

ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and developers worldwide. Its
rigorous quality control and thorough editorial work has gathered a devoted community exceeding
half a million subscribers, followers and fans. Each and every published article is carefully prepared,
edited, reviewed and curated according to the high quality standards set in Smashing Magazine's own
publishing policy. Smashing Magazine publishes articles on a daily basis with topics ranging from
business, visual design, typography, front-end as well as back-end development, all the way to
usability and user experience design. The magazine is — and always has been — a professional and
independent online publication neither controlled nor influenced by any third parties, delivering
content in the best interest of its readers. These guidelines are continually revised and updated to
assure that the quality of the published content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing companies in the field of Web
design. Founded in 2009 by Sven Lennartz and Vitaly Friedman, the company's headquarters is
situated in southern Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead
publication, Smashing Magazine, has gained worldwide attention since its emergence back in 2006,
and is supported by the vast, global Smashing community and readership. Smashing Magazine had
proven to be a trustworthy online source containing high quality articles on progressive design and

coding techniques as well as recent developments in the Web design industry.

 About this eBook
This eBook, "Responsive Design", gives an overview about responsive Web design, showing many
situations and techniques in which this approach can be applied to. Smartphones, tablets, laptops and
desktop computers may share the same design, which is adapted according to screen size, platform
and orientation of each device. Flexible grids and layouts, images, text and an intelligent use of CSS
media queries are included.

Table of Contents
Responsive Web Design: What It Is And How To Use It

Progressive And Responsive Navigation

Techniques For Gracefully Degrading Media Queries

Is There Ever A Justification For Responsive Text?

How To Use CSS3 Media Queries To Create A Mobile Version Of Your Website

Device-Agnostic Approach To Responsive Web Design

Content Prototyping In Responsive Web Design

About The Authors

 Responsive Web Design: What It Is And How To Use It
Kayla Knight

Almost every new client these days wants a mobile version of their website. It’s practically essential
after all: one design for the BlackBerry, another for the iPhone, the iPad, netbook, Kindle — and all
screen resolutions must be compatible, too. In the next five years, we’ll likely need to design for a
number of additional inventions. When will the madness stop? It won’t, of course.

In the field of Web design and development, we’re quickly getting to the point of being unable to keep
up with the endless new resolutions and devices. For many websites, creating a website version for
each resolution and new device would be impossible, or at least impractical. Should we just suffer the
consequences of losing visitors from one device, for the benefit of gaining visitors from another? Or is
there another option?

Responsive Web design is the approach that suggests that design and development should respond to
the user’s behavior and environment based on screen size, platform and orientation. The practice
consists of a mix of flexible grids and layouts, images and an intelligent use of CSS media queries. As
the user switches from their laptop to iPad, the website should automatically switch to accommodate
for resolution, image size and scripting abilities. In other words, the website should have the
technology to automatically respond to the user’s preferences. This would eliminate the need for a
different design and development phase for each new gadget on the market.

The Concept Of Responsive Web Design
Ethan Marcotte wrote an introductory article about the approach, “Responsive Web Design,” for A
List Apart. It stems from the notion of responsive architectural design, whereby a room or space
automatically adjusts to the number and flow of people within it:

“Recently, an emergent discipline called “responsive architecture” has begun asking how
physical spaces can respond to the presence of people passing through them. Through a
combination of embedded robotics and tensile materials, architects are experimenting with art
installations and wall structures that bend, flex, and expand as crowds approach them. Motion
sensors can be paired with climate control systems to adjust a room’s temperature and ambient
lighting as it fills with people. Companies have already produced “smart glass technology” that
can automatically become opaque when a room’s occupants reach a certain density threshold,
giving them an additional layer of privacy.”

Transplant this discipline onto Web design, and we have a similar yet whole new idea. Why should we
create a custom Web design for each group of users; after all, architects don’t design a building for
each group size and type that passes through it? Like responsive architecture, Web design should

automatically adjust. It shouldn’t require countless custom-made solutions for each new category of
users.

Obviously, we can’t use motion sensors and robotics to accomplish this the way a building would.
Responsive Web design requires a more abstract way of thinking. However, some ideas are already
being practiced: fluid layouts, media queries and scripts that can reformat Web pages and mark-up
effortlessly (or automatically).

But responsive Web design is not only about adjustable screen resolutions and automatically resizable
images, but rather about a whole new way of thinking about design. Let’s talk about all of these
features, plus additional ideas in the making.

Adjusting Screen Resolution
With more devices come varying screen resolutions, definitions and orientations. New devices with
new screen sizes are being developed every day, and each of these devices may be able to handle
variations in size, functionality and even color. Some are in landscape, others in portrait, still others
even completely square. As we know from the rising popularity of the iPhone, iPad and advanced
smartphones, many new devices are able to switch from portrait to landscape at the user’s whim. How
is one to design for these situations?

In addition to designing for both landscape and portrait (and enabling those orientations to possibly
switch in an instant upon page load), we must consider the hundreds of different screen sizes. Yes, it is
possible to group them into major categories, design for each of them, and make each design as
flexible as necessary. But that can be overwhelming, and who knows what the usage figures will be in
five years? Besides, many users do not maximize their browsers, which itself leaves far too much
room for variety among screen sizes.

Morten Hjerde and a few of his colleagues identified statistics on about 400 devices sold between
2005 and 2008. Below are some of the most common:

Since then even more devices have come out. It’s obvious that we can’t keep creating custom
solutions for each one. So, how do we deal with the situation?

PART OF THE SOLUTION: FLEXIBLE EVERYTHING

A few years ago, when flexible layouts were almost a “luxury” for websites, the only things that were
flexible in a design were the layout columns (structural elements) and the text. Images could easily
break layouts, and even flexible structural elements broke a layout’s form when pushed enough.
Flexible designs weren’t really that flexible; they could give or take a few hundred pixels, but they
often couldn’t adjust from a large computer screen to a netbook.

Now we can make things more flexible. Images can be automatically adjusted, and we have
workarounds so that layouts never break (although they may become squished and illegible in the
process). While it’s not a complete fix, the solution gives us far more options. It’s perfect for devices
that switch from portrait orientation to landscape in an instant or for when users switch from a large
computer screen to an iPad.

In Ethan Marcotte’s article, he created a sample Web design that features this better flexible layout:

The entire design is a lovely mix of fluid grids, fluid images and smart mark-up where needed.
Creating fluid grids is fairly common practice, and there are a number of techniques for creating fluid
images:

• Hiding and Revealing Portions of Images

• Creating Sliding Composite Images

• Foreground Images That Scale With the Layout

For more information on creating fluid websites, be sure to look at the book “Flexible Web Design:
Creating Liquid and Elastic Layouts with CSS” by Zoe Mickley Gillenwater, and download the sample
chapter “Creating Flexible Images.” In addition, Zoe provides the following extensive list of tutorials,
resources, inspiration and best practices on creating flexible grids and layouts: “Essential Resources
for Creating Liquid and Elastic Layouts.”

While from a technical perspective this is all easily possible, it’s not just about plugging these
features in and being done. Look at the logo in this design, for example:

If resized too small, the image would appear to be of low quality, but keeping the name of the website
visible and not cropping it off was important. So, the image is divided into two: one (of the
illustration) set as a background, to be cropped and to maintain its size, and the other (of the name)
resized proportionally.

<h1 id="logo"></h1>

Above, the h1 element holds the illustration as a background, and the image is aligned according to the
container’s background (the heading).

This is just one example of the kind of thinking that makes responsive Web design truly effective. But
even with smart fixes like this, a layout can become too narrow or short to look right. In the logo
example above (although it works), the ideal situation would be to not crop half of the illustration or
to keep the logo from being so small that it becomes illegible and “floats” up.

 Flexible Images
One major problem that needs to be solved with responsive Web design is working with images. There
are a number of techniques to resize images proportionately, and many are easily done. The most
popular option, noted in Ethan Marcotte’s article on fluid images but first experimented with by
Richard Rutter, is to use CSS’s max-width for an easy fix.

As long as no other width-based image styles override this rule, every image will load in its original
size, unless the viewing area becomes narrower than the image’s original width. The maximum width
of the image is set to 100% of the screen or browser width, so when that 100% becomes narrower, so
does the image. Essentially, as Jason Grigsby noted, “The idea behind fluid images is that you deliver
images at the maximum size they will be used at. You don’t declare the height and width in your code,
but instead let the browser resize the images as needed while using CSS to guide their relative size”.
It’s a great and simple technique to resize images beautifully.

Note that max-width is not supported in IE, but a good use of width: 100% would solve the problem
neatly in an IE-specific style sheet. One more issue is that when an image is resized too small in some
older browsers in Windows, the rendering isn’t as clear as it ought to be. There is a JavaScript to fix
this issue, though, found in Ethan Marcotte’s article.

While the above is a great quick fix and good start to responsive images, image resolution and
download times should be the primary considerations. While resizing an image for mobile devices can
be very simple, if the original image size is meant for large devices, it could significantly slow
download times and take up space unnecessarily.

FILAMENT GROUP’S RESPONSIVE IMAGES

This technique, presented by the Filament Group, takes this issue into consideration and not only
resizes images proportionately, but shrinks image resolution on smaller devices, so very large images
don’t waste space unnecessarily on small screens.

This technique requires a few files, all of which are available on Github. First, a JavaScript file (rwd-
images.js), the .htaccess file and an image file (rwd.gif). Then, we can use just a bit of HTML to
reference both the larger and smaller resolution images: first, the small image, with an .r prefix to
clarify that it should be responsive, and then a reference to the bigger image using data-fullsrc.

The data-fullsrc is a custom HTML5 attribute, defined in the files linked to above. For any screen
that is wider than 480 pixels, the larger-resolution image (largeRes.jpg) will load; smaller screens
wouldn’t need to load the bigger image, and so the smaller image (smallRes.jpg) will load.

The JavaScript file inserts a base element that allows the page to separate responsive images from
others and redirects them as necessary. When the page loads, all files are rewritten to their original
forms, and only the large or small images are loaded as necessary. With other techniques, all higher-
resolution images would have had to be downloaded, even if the larger versions would never be used.
Particularly for websites with a lot of images, this technique can be a great saver of bandwidth and
loading time.

This technique is fully supported in modern browsers, such as IE8+, Safari, Chrome and Opera, as
well as mobile devices that use these same browsers (iPad, iPhone, etc.). Older browsers and Firefox
degrade nicely and still resize as one would expect of a responsive image, except that both resolutions
are downloaded together, so the end benefit of saving space with this technique is void.

STOP IPHONE SIMULATOR IMAGE RESIZING

One nice thing about the iPhone and iPod Touch is that Web designs automatically rescale to fit the
tiny screen. A full-sized design, unless specified otherwise, would just shrink proportionally for the
tiny browser, with no need for scrolling or a mobile version. Then, the user could easily zoom in and
out as necessary.

There was, however, one issue this simulator created. When responsive Web design took off, many
noticed that images were still changing proportionally with the page even if they were specifically
made for (or could otherwise fit) the tiny screen. This in turn scaled down text and other elements.

(Image: Think Vitamin | Website referenced: 8 Faces)

Because this works only with Apple’s simulator, we can use an Apple-specific meta tag to fix the
problem, placing it below the website’s <head> section. Thanks to Think Vitamin’s article on image
resizing, we have the meta tag below:

Setting the initial-scale to 1 overrides the default to resize images proportionally, while leaving them
as is if their width is the same as the device’s width (in either portrait or landscape mode). Apple’s
documentation has a lot more information on the viewport meta tag.

Custom Layout Structure
For extreme size changes, we may want to change the layout altogether, either through a separate style
sheet or, more efficiently, through a CSS media query. This does not have to be troublesome; most of
the styles can remain the same, while specific style sheets can inherit these styles and move elements
around with floats, widths, heights and so on.

For example, we could have one main style sheet (which would also be the default) that would define
all of the main structural elements, such as #wrapper, #content, #sidebar, #nav, along with colors,
backgrounds and typography. Default flexible widths and floats could also be defined.

If a style sheet made the layout too narrow, short, wide or tall, we could then detect that and switch to
a new style sheet. This new child style sheet would adopt everything from the default style sheet and
then just redefine the layout’s structure.

Here is the style.css (default) content:

/* Default styles that will carry to the child style sheet */
html,body{

 background...
 font...
 color...
}
h1,h2,h3{}
p, blockquote, pre, code, ol, ul{}
/* Structural elements */
#wrapper{
 width: 80%;
 margin: 0 auto;
 background: #fff;
 padding: 20px;
}
#content{
 width: 54%;
 float: left;
 margin-right: 3%;
}
#sidebar-left{
 width: 20%;
 float: left;
 margin-right: 3%;
}
#sidebar-right{
 width: 20%;
 float: left;
}
Here is the mobile.css (child) content:
#wrapper{
 width: 90%;
}
#content{
 width: 100%;
}
#sidebar-left{
 width: 100%;
 clear: both;
 /* Additional styling for our new layout */
 border-top: 1px solid #ccc;
 margin-top: 20px;
}
#sidebar-right{
 width: 100%;
 clear: both;
 /* Additional styling for our new layout */
 border-top: 1px solid #ccc;
 margin-top: 20px;
}

MEDIA QUERIES

CSS3 supports all of the same media types as CSS 2.1, such as screen, print and handheld, but has
added dozens of new media features, including max-width, device-width, orientation and color. New
devices made after the release of CSS3 (such as the iPad and Android devices) will definitely support
media features. So, calling a media query using CSS3 features to target these devices would work just
fine, and it will be ignored if accessed by an older computer browser that does not support CSS3.

In Ethan Marcotte’s article, we see an example of a media query in action:

<link rel="stylesheet" type="text/css"
 media="screen and (max-device-width: 480px)"
 href="shetland.css" />

This media query is fairly self-explanatory: if the browser displays this page on a screen (rather than
print, etc.), and if the width of the screen (not necessarily the viewport) is 480 pixels or less, then load
shetland.css.

New CSS3 features also include orientation (portrait vs. landscape), device-width, min-device-width
and more. Look at “The Orientation Media Query” for more information on setting and restricting
widths based on these media query features.

One can create multiple style sheets, as well as basic layout alterations defined to fit ranges of widths
— even for landscape vs. portrait orientations. Be sure to look at the section of Ethan Marcotte’s
article entitled “Meet the media query” for more examples and a more thorough explanation.

Multiple media queries can also be dropped right into a single style sheet, which is the most efficient
option when used:

/* Smartphones (portrait and landscape) ----------- */
@media only screen
and (min-device-width : 320px)
and (max-device-width : 480px) {
/* Styles */
}
/* Smartphones (landscape) ----------- */
@media only screen
and (min-width : 321px) {
/* Styles */
}
/* Smartphones (portrait) ----------- */
@media only screen
and (max-width : 320px) {
/* Styles */
}

The code above is from a free template for multiple media queries between popular devices by Andy
Clark. See the differences between this approach and including different style sheet files in the mark-
up as shown in the post “Hardboiled CSS3 Media Queries.”

CSS3 MEDIA QUERIES

Above are a few examples of how media queries, both from CSS 2.1 and CSS3 could work. Let’s now
look at some specific how-to’s for using CSS3 media queries to create responsive Web designs. Many
of these uses are relevant today, and all will definitely be usable in the near future.

The min-width and max-width properties do exactly what they suggest. The min-width property sets a
minimum browser or screen width that a certain set of styles (or separate style sheet) would apply to.
If anything is below this limit, the style sheet link or styles will be ignored. The max-width property
does just the opposite. Anything above the maximum browser or screen width specified would not
apply to the respective media query.

Note in the examples below that we’re using the syntax for media queries that could be used all in one
style sheet. As mentioned above, the most efficient way to use media queries is to place them all in
one CSS style sheet, with the rest of the styles for the website. This way, multiple requests don’t have
to be made for multiple style sheets.

@media screen and (min-width: 600px) {
 .hereIsMyClass {
 width: 30%;
 float: right;
 }
}

The class specified in the media query above (hereIsMyClass) will work only if the browser or screen
width is above 600 pixels. In other words, this media query will run only if the minimum width is 600
pixels (therefore, 600 pixels or wider).

@media screen and (max-width: 600px) {
 .aClassforSmallScreens {
 clear: both;
 font-size: 1.3em;
 }
}

Now, with the use of max-width, this media query will apply only to browser or screen widths with a
maximum width of 600 pixels or narrower.

While the above min-width and max-width can apply to either screen size or browser width,
sometimes we’d like a media query that is relevant to device width specifically. This means that even
if a browser or other viewing area is minimized to something smaller, the media query would still
apply to the size of the actual device. The min-device-width and max-device-width media query
properties are great for targeting certain devices with set dimensions, without applying the same styles
to other screen sizes in a browser that mimics the device’s size.

@media screen and (max-device-width: 480px) {
 .classForiPhoneDisplay {
 font-size: 1.2em;
 }
}
@media screen and (min-device-width: 768px) {
 .minimumiPadWidth {
 clear: both;
 margin-bottom: 2px solid #ccc;
 }
}

There are also other tricks with media queries to target specific devices. Thomas Maier has written
two short snippets and explanations for targeting the iPhone and iPad only:

• CSS for iPhone 4 (Retina display)

• How To: CSS for the iPad

For the iPad specifically, there is also a media query property called orientation. The value can be
either landscape (horizontal orientation) or portrait (vertical orientation).

@media screen and (orientation: landscape) {
 .iPadLandscape {
 width: 30%;
 float: right;
 }
}
@media screen and (orientation: portrait) {
 .iPadPortrait {
 clear: both;
 }
}

Unfortunately, this property works only on the iPad. When determining the orientation for the iPhone
and other devices, the use of max-device-width and min-device-width should do the trick.

There are also many media queries that make sense when combined. For example, the min-width and
max-width media queries are combined all the time to set a style specific to a certain range.

@media screen and (min-width: 800px) and (max-width: 1200px) {
 .classForaMediumScreen {
 background: #cc0000;
 width: 30%;
 float: right;
 }
}

The above code in this media query applies only to screen and browser widths between 800 and 1200
pixels. A good use of this technique is to show certain content or entire sidebars in a layout depending
on how much horizontal space is available.

Some designers would also prefer to link to a separate style sheet for certain media queries, which is
perfectly fine if the organizational benefits outweigh the efficiency lost. For devices that do not switch
orientation or for screens whose browser width cannot be changed manually, using a separate style
sheet should be fine.

You might want, for example, to place media queries all in one style sheet (as above) for devices like
the iPad. Because such a device can switch from portrait to landscape in an instant, if these two media
queries were placed in separate style sheets, the website would have to call each style sheet file every
time the user switched orientations. Placing a media query for both the horizontal and vertical
orientations of the iPad in the same style sheet file would be far more efficient.

Another example is a flexible design meant for a standard computer screen with a resizable browser.
If the browser can be manually resized, placing all variable media queries in one style sheet would be
best.

Nevertheless, organization can be key, and a designer may wish to define media queries in a standard
HTML link tag:

<link rel="stylesheet" media="screen and (max-width: 600px)" href="small.css" />
<link rel="stylesheet" media="screen and (min-width: 600px)" href="large.css" />
<link rel="stylesheet" media="print" href="print.css" />

JAVASCRIPT

Another method that can be used is JavaScript, especially as a back-up to devices that don’t support
all of the CSS3 media query options. Fortunately, there is already a pre-made JavaScript library that
makes older browsers (IE 5+, Firefox 1+, Safari 2) support CSS3 media queries. If you’re already
using these queries, just grab a copy of the library, and include it in the mark-up: css3-
mediaqueries.js.

In addition, below is a sample jQuery snippet that detects browser width and changes the style sheet

accordingly — if one prefers a more hands-on approach:

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js"></script>
<script type="text/javascript">
 $(document).ready(function(){
 $(window).bind("resize", resizeWindow);
 function resizeWindow(e){
 var newWindowWidth = $(window).width();
 // If width width is below 600px, switch to the mobile stylesheet
 if(newWindowWidth < 600){ $("link[rel=stylesheet]").attr({href : "mobile.css"}); } // Else if width is above 600px, switch
to the large stylesheet else if(newWindowWidth > 600){
 $("link[rel=stylesheet]").attr({href : "style.css"});
 }
 }
 });
</script>

There are many solutions for pairing up JavaScript with CSS media queries. Remember that media
queries are not an absolute answer, but rather are fantastic options for responsive Web design when it
comes to pure CSS-based solutions. With the addition of JavaScript, we can accomodate far more
variations. For detailed information on using JavaScript to mimic or work with media queries, look at
“Combining Media Queries and JavaScript.”

Showing or Hiding Content
It is possible to shrink things proportionally and rearrange elements as necessary to make everything
fit (reasonably well) as a screen gets smaller. It’s great that that’s possible, but making every piece of
content from a large screen available on a smaller screen or mobile device isn’t always the best
answer. We have best practices for mobile environments: simpler navigation, more focused content,
lists or rows instead of multiple columns.

Responsive Web design shouldn’t be just about how to create a flexible layout on a wide range of
platforms and screen sizes. It should also be about the user being able to pick and choose content.
Fortunately, CSS has been allowing us to show and hide content with ease for years!

display: none;

Either declare display: none for the HTML block element that needs to be hidden in a specific style
sheet or detect the browser width and do it through JavaScript. In addition to hiding content on smaller
screens, we can also hide content in our default style sheet (for bigger screens) that should be
available only in mobile versions or on smaller devices. For example, as we hide major pieces of
content, we could replace them with navigation to that content, or with a different navigation structure
altogether.

Note that we haven’t used visibility: hidden here; this just hides the content (although it is still there),
whereas the display property gets rid of it altogether. For smaller devices, there is no need to keep the
mark-up on the page — it just takes up resources and might even cause unnecessary scrolling or break
the layout.

Here is our mark-up:

<p class="sidebar-nav">Left Sidebar Content | Right Sidebar Content</p>
<div id="content">

 <h2>Main Content</h2>
</div>
<div id="sidebar-left">
 <h2>A Left Sidebar</h2>
</div>
<div id="sidebar-right">
 <h2>A Right Sidebar</h2>
</div>

In our default style sheet below, we have hidden the links to the sidebar content. Because our screen is
large enough, we can display this content on page load.

Here is the style.css (default) content:

#content{
 width: 54%;
 float: left;
 margin-right: 3%;
}

#sidebar-left{
 width: 20%;
 float: left;
 margin-right: 3%;
}

#sidebar-right{
 width: 20%;
 float: left;
}
.sidebar-nav{display: none;}

Now, we hide the two sidebars (below) and show the links to these pieces of content. As an alternative,
the links could call to JavaScript to just cancel out the display: none when clicked, and the sidebars
could be realigned in the CSS to float below the content (or in another reasonable way).

Here is the mobile.css (simpler) content:

#content{
 width: 100%;
}
#sidebar-left{
 display: none;
}
#sidebar-right{
 display: none;
}
.sidebar-nav{display: inline;}

With the ability to easily show and hide content, rearrange layout elements and automatically resize
images, form elements and more, a design can be transformed to fit a huge variety of screen sizes and
device types. As the screen gets smaller, rearrange elements to fit mobile guidelines; for example, use
a script or alternate style sheet to increase white space or to replace image navigation sources on
mobile devices for better usability (icons would be more beneficial on smaller screens).

TOUCHSCREENS VS. CURSORS

Touchscreens are becoming increasingly popular. Assuming that smaller devices are more likely to be
given touchscreen functionality is easy, but don’t be so quick. Right now touchscreens are mainly on
smaller devices, but many laptops and desktops on the market also have touchscreen capability. For
example, the HP Touchsmart tm2t is a basic touchscreen laptop with traditional keyboard and mouse
that can transform into a tablet.

Touchscreens obviously come with different design guidelines than purely cursor-based interaction,
and the two have different capabilities as well. Fortunately, making a design work for both doesn’t
take a lot of effort. Touchscreens have no capability to display CSS hovers because there is no cursor;
once the user touches the screen, they click. So, don’t rely on CSS hovers for link definition; they
should be considered an additional feature only for cursor-based devices.

Look at the article “Designing for Touchscreen” for more ideas. Many of the design suggestions in it
are best for touchscreens, but they would not necessarily impair cursor-based usability either. For
example, sub-navigation on the right side of the page would be more user-friendly for touchscreen
users, because most people are right-handed; they would therefore not bump or brush the navigation
accidentally when holding the device in their left hand. This would make no difference to cursor users,
so we might as well follow the touchscreen design guideline in this instance. Many more guidelines of
this kind can be drawn from touchscreen-based usability.

A Showcase Of Responsive Web Design
Below we have a few examples of responsive Web design in practice today. For many of these
websites, there is more variation in structure and style than is shown in the pairs of screenshots
provided. Many have several solutions for a variety of browsers, and some even adjust elements
dynamically in size without the need for specific browser dimensions. Visit each of these, and adjust

your browser size or change devices to see them in action.

Art Equals Work
Art Equals Work is a simple yet great example of responsive Web design. The first screenshot below
is the view from a standard computer screen dimension. The website is flexible with browser widths
by traditional standars, but once the browser gets too narrow or is otherwise switched to a device with
a smaller screen, then the layout switches to a more readable and user-friendly format. The sidebar
disappears, navigation goes to the top, and text is enlarged for easy and simple vertical reading.

Think Vitamin

With Think Vitamin, we see a similar approach. When on a smaller screen or browser, the sidebar and
top bar are removed, the navigation simplifies and moves directly above the content, as does the logo.
The logo keeps its general look yet is modified for a more vertical orientation, with the tagline below
the main icon. The white space around the content on larger screens is also more spacious and
interesting, whereas it is simplified for practical purposes on smaller screens.

8 Faces
8 Faces’ website design is flexible, right down to a standard netbook or tablet device, and expands in
content quantity and layout width when viewed on wider screens or expanded browsers. When viewed
on narrower screens, the featured issue on the right is cut out, and the content below is shortened and

rearranged in layout, leaving only the essential information.

Responsive Web Design: What It Is and How To Use It (Part II)

Hicksdesign
The Hicksdesign website has three columns when viewed on a conventional computer screen with a
maximized browser. When minimized in width, the design takes on a new layout: the third column to
the right is rearranged above the second, and the logo moves next to the introductory text. Thus, no
content needs to be removed for the smaller size. For even narrower screens and browser widths, the
side content is removed completely and a simplified version is moved up top. Finally, the font size
changes with the screen and browser width; as the browser gets narrower, the font size throughout gets
smaller and remains proportional.

Information Architects

Here is a great example of a flexible image. The image in this design automatically resizes after
certain “break” points, but in between those width changes, only the side margins and excess white
space are altered. On smaller screens and minimized browsers, the navigation simplifies and the
columns of navigation at the top fall off. At the design’s smallest version, the navigation simplifies to
just a drop-down menu, perfect for saving space without sacrificing critical navigation links.

Garret Keizer
The website for Garret Keizer is fully flexible in wider browsers and on larger screens: the photo, logo
and other images resize proportionally, as do the headings and block areas for text. At a few points,
some pieces of text change in font size and get smaller as the screen or browser gets narrower. After a

sample content of Responsive Design

Cosmic Memory (Cosmic Memory, Prehistory of Earth & Man) book
click The Last Debate
read online Why Socrates Died: Dispelling the Myths book
download online Successful Small Game Hunting: Rediscovering Our Hunting Heritage pdf,
azw (kindle), epub, doc, mobi

http://nautickim.es/books/Cosmic-Memory--Cosmic-Memory--Prehistory-of-Earth---Man-.pdf
http://interactmg.com/ebooks/Topics-in-Hyperplane-Arrangements--Polytopes-and-Box-
Splines--Universitext-.pdf
http://diy-chirol.com/lib/The-Politics-of-the-Family.pdf
http://hasanetmekci.com/ebooks/Johnnie.pdf

Powered by TCPDF (www.tcpdf.org)

http://nautickim.es/books/Cosmic-Memory--Cosmic-Memory--Prehistory-of-Earth---Man-.pdf
http://interactmg.com/ebooks/Topics-in-Hyperplane-Arrangements--Polytopes-and-Box-Splines--Universitext-.pdf
http://diy-chirol.com/lib/The-Politics-of-the-Family.pdf
http://hasanetmekci.com/ebooks/Johnnie.pdf
http://hasanetmekci.com/ebooks/Johnnie.pdf
http://nautickim.es/books/Cosmic-Memory--Cosmic-Memory--Prehistory-of-Earth---Man-.pdf
http://interactmg.com/ebooks/Topics-in-Hyperplane-Arrangements--Polytopes-and-Box-Splines--Universitext-.pdf
http://interactmg.com/ebooks/Topics-in-Hyperplane-Arrangements--Polytopes-and-Box-Splines--Universitext-.pdf
http://diy-chirol.com/lib/The-Politics-of-the-Family.pdf
http://hasanetmekci.com/ebooks/Johnnie.pdf
http://www.tcpdf.org

